Category Archives: Ballistics

Savage .223 Precision

Savage 10FP in .223 Remington with Nikon Buckmaster 4.5-14x40 scope

Continuing precision testing my guns I took my old Savage 10FP to the range with boxes of six different commercially-available .223 Remington rounds. The rifle has a 24-inch 1:9 heavy barrel installed in a Choate Ultimate Varmint Stock, which makes it a superb bench gun. I mounted the 14x Nikon scope before I had found good Quick-Detach mounts, and before I had concluded 20x is my preferred minimum for precision shooting. But it’s still fine for setting a baseline with commercial ammo:

Load Avg Muzzle
Velocity
CEP (MOA) 90% Confidence
Interval
Black Hills 75gr Match 2620fps 0.23 (0.19, 0.36)
Georgia Arms 69gr Match 2705fps 0.30 (0.24, 0.46)
Wolf Gold 75gr Match 2600fps 0.59 (0.49, 0.87)
American Eagle 55gr 3170fps 0.63 (0.53, 0.93)
Silver Bear 62gr 3000fps 0.80 (0.67, 1.17)
Wolf Classic 55gr 3120fps 0.84 (0.71, 1.25)

The 100-yard target can be reviewed here.

Shooting Bullets Into Water – Part III: Underwater Ballistics

In Part I we noted that water provides a good model of a bullet’s terminal ballistics. We discovered that while slow rifle bullets don’t deform in water they do destabilize and virtually stop after a few feet. At higher speeds they mushroom and/or disintegrate, again causing them to stop within a few feet.

In Part II we discovered that conventional bullets will ricochet back out of the water when fired at shallow angles, but that bullets fired base first are uncannily stable. There has been long-standing military interest in producing bullets that can be fired into or under water and retain accuracy and energy over any significant distance. Supposedly very long tungsten-core bullets (with extreme sectional densities) can “swim” up to 40 feet, but those are experimental projectiles that require special guns.

Curious to see what sort of distance and accuracy could be obtained by the common rifleman we did a series of studies with 225gr Hornady OTM .30″ bullets. First we checked the effect of velocity. Fired base-first these bullets begin to deform about 2000fps on impact with the water. They disintegrate above 2200fps.

About half the time there is a second significant cavity that forms 4-8 feet from water entry, and most of the time when it does form the bullet diverts as much as 45 degrees from its original trajectory. An example is in the following still:

The most consistent effect of the higher velocity bullets was to increase the size and redirection of the second cavity. Bullets fired at 1000fps traveled about 14 feet, while the 2000fps bullets “swam” about 20 feet before essentially stopping and sinking to the bottom. The distinction is that the slower bullets pretty much followed a straight line and didn’t suffer significant deflection or secondary cavitation.

The bullets give up about half their speed within the first 5 feet of water, but are they good enough for fishing? We set up an underwater target 7 feet from the point of entry into the water and fired at an angle of 7 degrees to the water’s surface from a distance of 25 feet. A string of 5 subsonic shots printed a group on the target with an extreme spread of 7″. I’m not a fisher, but in comparison to traditional rifle bullets, which aren’t effective beyond 3 feet, these base-first bullets are remarkably effective in terms of both underwater precision and swim distance.

Shooting Bullets Into Water – Part II: Ricochet

In Part I we noted that water provides a good model of a bullet’s terminal ballistics. We have also spent some time with our water facility and the high-speed imaging technicians from Aimed Research studying the dynamics of ricochet.

Following extensive experiments we have observed that pointed and round-nosed bullets will almost certainly ricochet out of the water when fired at incident angles flatter than 10 degrees. Even superstabilized bullets leave contact with the water tumbling erratically, and give up as much as 90% of their energy to the impact.

Aimed Research provides high-speed video of the behavior. This is a 225gr .30 caliber bullet:


Continue reading

Shooting Bullets Into Water – Part I

What does a bullet do when it hits something? We have done extensive ballistic testing on water and will detail our results over the next few posts.

Why water? For one thing it’s a good simulant of soft animal tissue. Real animals may be the targets of any study, but given their bone and organ distribution it can be hard to get consistent results. For scientific purposes the standard medium for studying terminal ballistics has been calibrated gelatin, usually 10-20%. This allows for careful analysis of penetration and wound channels, but it is also a pain to prepare. If you are just interested in what happens to the bullet it turns out that a large tank of water has the same effect on projectiles and allows for easy recovery.

It was during water testing that we were first struck by the behavior of standard rifle bullets at subsonic velocities: They don’t deform at all. You can almost just polish out the rifling marks and load them again:

It takes high-speed video to see that even though they don’t expand these long rounds destabilize almost immediately on entering a body (of water, or otherwise). The following videos were provided by Aimed Research (which maintains a fascinating YouTube channel):

Two other videos are here and here.

For reference: At supersonic impact velocities hunting bullets expand. Following are four examples. The left-most is a solid copper alloy. The others are lead-core bullets with various expanding and bonding mechanisms designed to retain enough mass in the copper jacket to penetrate while dissipating some lead in the target shortly after impact.

“Bullet gel tests” are easy to find online if you want to see exactly how and when a particular bullet expands. Here is a striking microsecond image from one of Aimed Research’s gel tests:

Savage .308 Precision

Savage 10FP in .308 Winchester with Sightron SIII 8-32x56 scope

I had so much fun testing my 10/22s for precision that I decided to run analysis on my .308 Savage 10FP. This has been my benchmark medium rifle for almost a decade now, and has been abused accordingly: I have broken the bolt handle at least once and had to hammer out and even drill out stuck cases. How accurate is it now?

I shot the following two groups of Hornady 168gr OTM handloads at 100 yards. I only had 8 rounds of the first load, which uses Federal GMM cases with 44.4gr Varget. The second group is 10 shots from LC 04 cases with 44.7gr Varget. (This batch of Lake City brass has .2gr more water capacity than the Federal. The LC loads chronograph about 2850fps vs 2840fps for the FC loads. Keep in mind this is a 26″ barrel.) All loads are seated to 2.80″ and use FGM210M primers.

8-shot group 10-shot group

Based on these 18 data points the rifle with these loads has CEP = 0.30″ at 100 yards, or .28MOA. (The 90% confidence interval is .25″-.32″.) This means its 4MR is 1.3MOA — i.e., 96% of shots fired should stay within a 1.3MOA cone.

10/22 Precision Rifles

KIDD 10/22 in Archangel stock, Ruger 10/22 with Feddersen barrel in Vantage stock

These are both Ruger 10/22 style rifles built for shooting .22LR with maximum accuracy. On top is an $860 rifle built entirely by KIDD Innovative Design. The receiver and trigger are milled from aluminum, and the bolt from hardened steel. The single-stage trigger is also a crisply machined assembly that adjusts down to a pull of just 1.5 pounds. The lightweight barrel is guaranteed to group inside of half an inch at 50 yards. The gun here is screwed into a comfortable $100 ProMag Archangel Target stock

Do you have to spend $1000 to get an accurate .22 rifle? Expert barrel maker Fred Feddersen says one of his $170 barrels will turn an off-the-rack Ruger into a gun that can compete with any custom autoloader. So the second gun shown is a standard Ruger 10/22 receiver and bolt onto which I swapped Feddersen’s barrel. Of course I don’t think I can really shoot that well with a standard trigger, so to be fair I bought another $200 KIDD trigger assembly for it. The gun is shown here screwed into a beautiful $175 Tactical Solutions Vantage laminated stock.

Testing

The ammo shortage continues to plague the market for .22LR, so I consider myself lucky to still have four different types of ammo on hand. I screwed an AAC Element suppressor to each barrel, put each rifle in the Archangel stock, mounted the same high-power scope, and shot ten-round groups at 50 yards with the following subsonic 40gr loads:

  • Eley Match
  • SK+
  • CCI HP
  • Aguila SuperExtra

I have plenty of the Aguila on hand, so I used that for sighting and shot two groups with that. The Ruger/Feddersen fired all 50+ shots without any hiccups. The KIDD began to bog down at the end, experiencing a few failures to fire or extract on the Aguila. Cleaning the chamber and bolt face and testing some more showed it’s capable of running smoothly when clean, but evidently it doesn’t like too much of the copious .22LR fouling to build up. Do those tighter tolerances translate to higher precision?
Continue reading

AR-15 “Pistol” PDW

AR-15 .300BLK Pistol PDW

This is my recent AR-15 pistol build. The upper assembly from CMMG was $700 and features a KeyMod free-float handguard and 8″ medium barrel. It is chambered in .300BLK, which is currently the most versatile and efficient AR-15 caliber for such short barrels. I assembled the lower from a Seekins Precision forged receiver, Phase 5 Tactical pistol buffer tube, Noveske QD end plate, CMC 3.5lb single-stage trigger, and Stark SE-2 grip. Total component cost for the lower was $450. Unloaded weight for the complete firearm is only five pounds.

A generation ago sub-machine guns were the middle ground between handguns and full-power rifles. A famous photo from moments after the 1981 assassination attempt on President Reagan shows a Secret Service agent readying an Uzi he had produced from a nearby briefcase. We have since learned that power is more important than volume of fire, and that guns on full-auto with concealable magazines run empty far too quickly. Today the niche between handguns and long guns is filled with rifle-caliber “personal defense weapons” (PDWs), which are powerful enough for a serious gun fight but still portable enough for every day use and potential concealment.

AR-15 Pistol and Short-Barreled Rifle (SBR) lowersThe advantage of a “pistol” AR-15 is that it can be equipped with a barrel shorter than 16″ without the hassles of registering it as a Short-Barreled Rifle (SBR). What qualifies it as a pistol is that it doesn’t have a full stock or second vertical grip, yet the buffer tube required for the AR-15 to function can serve in a pinch as a three- or four-point mount, providing accuracy on par with a traditional carbine. (The ATF, struggling to make 80-year-old laws look reasonable in spite of evolutions in gun design and tactics, recently ruled that even arm braces do not turn a pistol into an SBR.)
Continue reading

The Problem With Nickel-Boron

A few months ago I discussed metals and coatings for firearm actions. I noted the NiB (nickel-boron) gets discolored by fouling, but my photos only showed a sparkling new NiB-X BCG. Following is a picture of what it looks like after a few hundred rounds of use, followed by ultrasonic cleaning and then aggressive scrubbing with steel and brass wire brushes. For comparison I show my heavily-used chromed BCG on top.

AR-15 bolts: Chrome and NiB-X, as clean as they get

Is this just a cosmetic issue? This is the only cleaning I’ve given the NiB BCG. I haven’t lubed it and I have subsequently run a few hundred rounds more without any action failures. However it seems plausible that if fouling can bind to the surface this stubbornly it could build up to the point of overtaking the nickel-boron’s lubricity and causing a stoppage that only traditional lubricants prevent. As noted in the original article this is not a problem with chrome and NP3: All photos of those to date have been after they were used and wiped clean with minimal brushing.

Update: A number of people say it’s unfair to compare a BCG from a piston gun to one from a DI gun, since the latter is subject to much harsher fouling. So for comparison I pulled and cleaned an NP3-coated BCG I’ve been running in a DI gun: pictures in my comment below.

Hand-discharging loaded rounds

Hand-fired loaded round

This sequence shows me discharging a loaded round I couldn’t disassemble. There is no reason to ever do something like this other than brazen curiosity. If you want to disable a live round you should pull the bullet and dump the powder. If for some reason that fails a safer alternative to discharging it is to “cook it off” in an open pit fire. (Ensure that anyone not wearing a face shield and thick clothing stands clear until it pops.)

Firearm cartridges are not particularly powerful or dangerous unless they are tightly confined. Without a gun barrel to contain and direct the pressure smokeless powder burns slowly, if at all, and bullets are propelled only by the force of the primer. (Granted, primers are not toys. They are true explosives. Small firearm primers produce 5-10 foot-pounds of energy, and can produce pressures on the order of 25kpsi in a small closed chamber. Like firecrackers, they can burn and maim.)

The round I had on my hands contained a full load of powder that turned out to be too fast for the bullet. I managed to pull the rest of the batch, but one bullet came out and left its copper gas check in the case. In that condition it could have been safely fired in a gun, except that it could have badly fouled the bore depending on how the gas check engaged it. So instead I drilled a hole in a piece of wood to tightly hold the case neck, put on leather and a face shield, then detonated the primer with a steel punch.

Integral .300BLK case and bullet on the left; hand-fired case and bullet missing gas check on right

An integral pulled bullet and case are shown left. The hand-fired case and bullet missing its gas check are on the right.

The problem with any containment when discharging a round is that without experience and knowledge of the case and powder you may be surprised at where the force ends up. The unsupported case could become a projectile or fail and produce shrapnel. The bullet and any other particles in the path of the venting gases can also be ejected almost anywhere. The setup above was carefully planned to allow for the worst possible outcome in every dimension. What actually happened is that the case neck held fast in its hole in the upper plank and the unsupported annealed upper body was blown out by the pressure, but did not fail. The gas check ended up embedded in the bottom plank directly below, and the gas was able to vent out the gap between the planks, blowing only minor wooden debris along with it.

Military Rifle Cartridges

5.56 NATO, 7.62 NATO, .300 Winchester Magnum, .338 Lapua Magnum, .50BMG

These are the rifle cartridges in common use by modern western militaries. The smallest is the standard NATO infantry round, 5.56x45mm. Adjacent on the left is the “medium” 7.62x51mm, also a common infantry round, especially in theaters where longer engagement distances render the 5.56 ineffective. Middle is .300 Winchester Magnum (.300WM), which has long been fielded for snipers needing to push beyond the 1000-yard “effective” range of the 7.62mm NATO. The .300WM is being supplanted by the fourth cartridge, .338 Lapua Magnum (.338LM), which has emerged as the top long-range military sniping cartridge. Previously, long-range snipers often relied on the largest of the “small arms” cartridges: the century-old “heavy” .50 Browning Machine Gun (.50BMG) round.

The following table lists the size, weight, and range of each cartridge for typical military loads, barrels, and sea-level atmospheric pressure. The point at which bullets slow through roughly 1100fps is a common benchmark for range because that is the speed of sound at typical air temperatures. Historically the accurate range of a precise bullet has been limited by the effects of crossing through the sound barrier. However, modern barrels tend towards faster rifling twist rates which increase transonic stability. In the last decade snipers have recorded first-shot kills at ranges where their bullets were subsonic. Snipers at high altitudes have made a number of remarkable kills at distances of up to 2700yds. The thinner air at high altitudes creates less drag on bullets and thus extends their range.

Caliber Cartridge Weight Length Bullet Energy at 1100fps Standard Barrel Muzzle Velocity Range to 1100fps
5.56mm
NATO
MK318 Mod 0 180gr   2.26″   62gr OTM 170 ft-lbs   14″ (M4A1) 2925fps   730 yds  
20″ (M16A2) 3130fps   780 yds  
7.62mm
NATO
M118LR 400gr   2.80″   175gr OTM 475 ft-lbs   20″ (M110) 2570fps   970 yds  
24″ (M24A1) 2640fps   1000 yds  
.300WM MK248 Mod 1 490gr   3.50″   220gr OTM 600 ft-lbs   24″ (M24A2) 2850fps   1400 yds  
.338LM 680gr   3.68″   250gr 680 ft-lbs   27″ 3000fps   1525 yds  
730gr   3.85″   300gr 820 ft-lbs   2800fps   1700 yds  
.50BMG M1022 1750gr  5.45″   650gr 1780 ft-lbs   29″ (M107) 2750fps   1500 yds  

On the heavy end it’s interesting to see that the .50BMG is actually at a disadvantage to .338LM in terms of range (not to mention the added weight of the rounds and heavier guns needed to efficiently shoot it). But it does have the capability of delivering more than double the payload, so it is still in use for anti-materiel roles.

Continue reading